Sedimentation Process Modeling using Transfer Function ARIMA for Water Quality Diagnosis and Prediction

نویسندگان

  • Sang-Hyuk Park
  • Jayong Koo
چکیده

This study develops a sedimentation process model that simulate the effects of inflow water quality, treatment flow rate and outflow water quality. The model uses transfer function ARIMA (Auto-Regressive Moving Average) for reflecting the dynamic characteristics of the system The sedimentation model for outflow water turbidity are separated into low and high turbidity by input variables, turbidity, pH, alkalinity and flow rate of raw water, and coagulant is used. Determination coefficients of the optimal model selected 0.92 and 0.97 in case of using optimal model for the transfer function model. In conclusion, predictive results were estimated 0.99 and 0.65, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Transfer Function ARIMA Modeling for the Sedimentation Process on Water Treatment Plant

This research applied the model that simulates the effects of inflow water quality, treatment flow rate and outflow water quality on drinking water treatment plant. The model is not a physical chemistry model. However it can evaluate the performance of sedimentation process as a statistical model. The model used transfer function ARIMA model for the prediction of turbidity on sedimentation rese...

متن کامل

Prediction of the Type and Amount of Surface Water Pollutants using Time Series Models (ARIMA) and L-THIA Model (Case Study: Namrood Sub-Basin, Hablehrood Watershed)

     Due to the important role of non-point source pollution in water resources management, in this study time series modeling was applied to forecast water quality parameters and L-THIA model (one type of non-point source pollution models) was applied to estimate water pollutants. The purpose of this study was to compare results of L-THIA model and ARIMA models in Namrood sub-basin located in ...

متن کامل

Rainfall-runoff process modeling using time series transfer function

Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...

متن کامل

Prediction of the Surface Run off in Semirom Mehregerd Watershed Using ARIMA Model

By understanding the temporal and spatial variations of water resources in a region, the better management and planning of water resources and water consumptions can be done. Time series modeling, if used correctly, will lead to acceptable results in this regard. For this purpose, the monthly runoff time series for 28 years was prepared at the hydrometric stations of Mehregerd region and the pr...

متن کامل

Performance Evaluation of ARIMA Hybrid Models in the Prediction of Daily Electrical Conductivity (A Case Study of Telazang Hydrometric Station)

In this study, we used the ARIMA time series model, the fuzzy-neural inference network, multi-layer perceptron artificial neural network, and ARIMA-ANN, ARIMA-ANFIS hybrid models for the modeling and prediction of the daily electrical conductivity parameter of daily teleZang hydrometric station over the statistical period of 49 years. For this purpose, the daily data for the 1996-2004 period we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015